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ON THE GENERALIZED SPECTRUM
FOR SECOND-ORDER ELLIPTIC SYSTEMS

ROBERT STEPHEN CANTRELL AND CHRIS COSNER

'ABSTRACT. We consider the system of homogeneous Dirichlet boundary value
problems

(%) Liu = Maii(z)u + a12(z)v], Lov = plaia(z)u + aze(z)v]

in a smooth bounded domain 0 C R¥, where L; and Ly are formally self-
adjoint second-order strongly uniformly elliptic operators. Using linear per-
turbation theory, continuation methods, and the Courant-Hilbert variational
eigenvalue characterization, we give a detailed qualitative and quantitative de-
scription of the real generalized spectrum of (), i.e., the set {(), u) € R?: ()
has a nontrivial solution}. The generalized spectrum, a term introduced by
Protter in 1979, is of considerable interest in the theory of linear partial dif-
ferential equations and also in bifurcation theory, as it is the set of potential
bifurcation points for associated semilinear systems.

1. Introduction. Suppose that ) is a bounded smooth domain in RY, N > 1,
and that L;, i = 1,2, are second-order strongly uniformly elliptic operators acting
on functions from () into C. Consider then the system
(1.1) Liu = Aa11(z)u + a12(z)v],  Lov = plagi(z)u + agz(z)v]
in €2, where u and v are required to satisfy homogeneous Dirichlet boundary con-
ditions. A point (A, u) € C? for which (1.1) has a nontrivial solution is called a
point of the generalized spectrum for (1.1). This term was introduced in 1979 by
Protter [14] for a class of problems which includes (1.1). He found that “the process
for obtaining lower bounds for the spectrum of a second order system is improved
substantially by the introduction of [this] generalization of the spectrum.”

From a different though related point of view, generalized spectra represent the
potential primary bifurcation points to associated semilinear problems. Such prob-
lems provide good examples for the recently developed multiparameter bifurcation
theory (see, for example, Alexander and Antman [1, 2], Fitzpatrick, Massabo, and
Pejsachowicz [10, 11], and Ize, Massabo, Pejsachowicz, and Vignoli [13]). Further,
such semilinear systems determine the steady-states to reaction-diffusion systems
arising in the applications. In particular, the situation when L; = Lo = —A and
diffusion coefficients are allowed to vary independently from equation to equation
occurs frequently.

For instance, Brown and Eilbeck [3] exploit the generalized spectrum to study
stabiltity properties of constant solutions to the problem

(1.2) ui(z,t) = di Au(z, t) + Fu,v), vi(z,t) = dolv(z,t) + G(u,v)
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when the diffusion coefficients d; and dy are allowed to vary independently.

Of course, it should be noted that in the above situations, it is not the full
generalized spectrum of Protter [14] but rather its restriction to R? which is of
paramount interest. We shall adopt this point of view in this article. Consequently,
unless otherwise specified the term generalized spectrum will now denote only the
set T = {(\, u) € R%: (1.1) has a nontrivial solution}. '

The geometric properties of the generalized spectrum for (1.1) were studied in
detail in Cantrell [5] in the special case when Ly = Lo, aij, ¢,7 = 1,2, are positive
constants, and ajjags — ag1a12 > 0. The generalized spectrum was determined to
be the collection of hyperbolae ' '

{An (@22 — M)/ ((a11022 — G21812) 1t = Ana11): n=1,2,3,. .. }

where 0 <. A; < Mg < --- are assumed to be the eigenvalues of Ly on () subject
to zero Dirichlet boundary data. In particular, the hyperbolae associated with Ap,

o ke PP, I,

and A,, m < n, intersect precisely winen

Am . /011022 — V021012

An T oriagz + V@21012

This information is used to analyze the bifurcation phenomena for the problem

Lu = Af(u,v)
: A in 1,
(13) Lo=pg(uo)
w=0=0 on -0(1,

where f(0,0) = 0 = g(0,0) and (8f/8u)(0,0) = a11, (8f/8v)(0,0) = a1z,
(8g/0u)(0,0) = agy, and (9g/0v)(0,0) = aza.

The analysis of the generalized spectrum in this special case uses an elimination
procedure which depends heavily on the fact that the a;;’s are constant and that
the elliptic operator is the same in both equations. It is highly desirable to eliminate
these restrictions both from the point of view of studying geometric properties of
generalized spectra and from the point of view of applications to more general
semilinear problems of the form ' ‘

Liu= \f(z,u,v) -

in ,
(1.4) Lav = pg(z,u,v)
u=0=v on 911,

where f(z,0,0) = 0 = g(z,0,0). The results for the special case in [5] are instructive
in this regard, in that they providé a good indication of what geometric structure
to expect in general. This last is especially valuable since a direct calculation of
the generalized spectrum is no longer possible. :

In the present article, we obtain qualitative and quantitative information about
the generalized spectrum for (1.1) which is comparable to that obtained for the
special case in [5]. Our major techniques are the perturbation theory of linear
operators, continuation methods based on the implicit function theorem, and vari-
ational characterizations of eigenvalues as in Courant and Hilbert [9]. We shall
make the following assumptions:
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(i) Ly and Ly are of the form

Lyu=— Z(A (@)t )z, + A*(2)u,

7,5=1

where, for k = 1,2 (Af;(2))Y,_, is symmetric and positive definite, A*(z) > 0,
ke otte(q), z]—l N, A¥ € C*(0)), where 0 < & < 1.

(ii) as; € C*(0), for i,j =1,2, where 0 < o < 1.

(iif) a11(z) > 0 on 12, aze(z) > 0 on O, a1 (z)ags(z) — az1(z)a1z(z) > 0 on Q

In addition, we shall assume for the most part that

(IV) a1z = Q21
We should note that while assumption (i) was not explicitly made in [5], it is
assumed there that the eigenvalues of L, = L, are all real and positive.

The remainder of this paper is structured as follows. In §2, basic qualitative
features of the set are developed via the perturbation theory of compact linear
operators and the implicit function theorem. More explicit quantitative informa-
tion is obtained in §3. Results on the multiplicity of eigenspaces corresponding to
points of the generalized spectrum are presented in §4. Finally, §5 deals with the
asymptotic structure of the generalized spectrum of (1.1).

2. Qualitative properties. Consider (1.1) and let ¥ denote its generalized
spectrum. For s € [0, 27], let A(s) denote the operator

_ [ coss 0 L; 0 a11  Qig
A(S)_< 0 sins)( 0 L;l) (am azg)

where (iv) has been assumed. If (i) is assumed, standard elliptic theory implies
that LT! and L3! are compact linear operators from C&(Q) to C; *(Q). Con-
sequently A(s) may be viewed as a compact linear operator on [Ca™*((1)]? under
assumptwns (i) and (ii). Observe that (A, u) € T precisely when A = (1/t(s)) cos s,
1 = (1/t(s)) sins where t(s) # 0 is an eigenvalue of A(s) for some s-€ [0, 27].

LEMMA 2.1. Under assumptions (i)-(iv), the eigenvalues of A(s) are all real.

PROOF. We shall argue only in the case coss # 0 and sins # 0, as the excep-
tional cases follow from analogous arguments for a single equation. Let us suppose
then that o € C is such that the null space N(I — 0 A(s)) # {0}. Then there are u
and v, not both identically zero, such that '

Lyu = ocoss{aiu + aiqv)

. n )
Lyv = osins(aiau + az2v) ~
with
u=0=v on L.
Consequently,
(2.1) Liu= o(a11u + a1av), Lov = o(aiau + agav)

where [; = (1/coss)L; and Ly = (1/sins)Lqy are formally selfadjoint elliptic
operators. Taking complex conjugates of the equations of (2.1) we obtain

(2.2) f, @ =d{a@+ CL12'U) EQ'U = 5(0,12’56 -+ aggﬁ).
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Multiplying the top equation of (2.1) by @ and the top equation of (2.2) by u,
integrating, and exploiting the formal selfadjointness of L; yield

(2.3) 0=(0—3) / aulul? + / a1 (0 — TU).
Q Q

Similarly, we may obtain

(24) 0=(0—25) / analo]? + / 013 (0uB — TT).
Q Q

Adding (2.3) and (2.4) produces
0=(oc—5) </Q a11|ul® + a1o(ud + @) + a221v12>
= (0 — &) (/;2 ay1|ul? + 2a12 Re(ud) +»a221'u|2) .

Now :
: / alllulQ +-2a19 Re(w‘)) - CL22|'UI2
A9

> [ axituf = 2l ol o + aalol
>0
since a11a99 — (a12)? > 0 and (u, v) # (0,0). Hence o = 5.
T.eMMA 2.2. Under assumptions (i)-(iv), ‘
dim N(I — cA(s)) = dim N([I - oA(s)]*)
for all o € R and s € [0, 27].

REMARK. The result is, of course, just the statement of the equality of the
geometric and algebraic multiplicities of the eigenspaces associated with (W u) ex.
PROOF. With no loss of generality, assume that cos s # 0 and sin s # 0. Suppose

that :
N(I~qA(s))=span{(ii),(iz) (5:)}

Let us denote this span by V. Define A:V xV.—Rby

A(Sa(s) 2a(2)

o (B ron (£ (S0
o () o (S| (o)

Since ajia92 — (a12)? > 0, A gives an inner product on V. Consequently, we may

choose \
(sm) (@2) (‘Pm)
Y1) \2 )"\ ¥m
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(2)-(2))-+
Next, observe that N(I — g A(s)) = N(L — AA) where
_({L;i 0 __ [ ocoss 0 . (a1 ais
L_<0 sz)’ A_< 0. asins>’ and A_<a12 CL22>'
Furthermore, if y € R(L — AA), y = (LA — AAA)(A~z) for some choice of z, and
consequently, if [(, )] denotes the inner product in [L?(()]?,

(y,A“ <¢>> - ((LA—AAA)(A—lz),A—l <$))
= <A‘1:c, (LA — AAA) (A-1 (5))) \
(174014 (U)

, =0
since LA — AAA is selfadjoint on {LQ(Q)P, where the domam of LA — AAA is taken
to be [H2(2) N H ()]
Now suppose that [I -0 A(s)]*z = 0. Then (I ~0A(s))z = S (5:) for some

so that

choice of constants {cy,... ,cm}. Consequerntly
(L—AA)z= ZCZAA <¢)
=1
Hence

But

| (5 |
(gc%)r )(im‘ ).(2)

=2 (4 (3)-(3))-Eea (3 )( 1)) - L=
Hence ¢; =0 for j = 1,2,...,m, and (I — 0 A(s))z =

Lemmas 2.1 and 2.2 enable us to establish the followmg theorem, which is the
fundamental qualitative observation on X.

THEOREM 2.3. Suppose (i)-(iv) hold and that dim N(I — 09A(so)) = ko > 1
for some 09 € R and sg € [0,27]. Then there is a 6o > 0 and ko analytic functions
from (so — 8y, 50 + 6o) into R, say @y, ..., Py, such that

(a) @5(s0) = oo;

(b) N(I — @;(s)A(s)) # {0} for s € (80 — 60,50+ 60), 7 =1,2,..., ko;

(c) there exists a neighborhood Vy of (0¢ cos sg, 00 sinsg) such that

SNy = {(@;‘(s) coss, ®;(s)sins): s € (so — o, S0+ 60),7 = 1,2,..., ko}.
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Moreover, for each j € {1,2,...,ko}, there is an analytic function
z;: (s0 — 8o, 50 + 60) — [Co T ()]
such that z;(s) € N(I — ®;(s)A(s)) \ {0} for all 5 € (s0 — b0, 50 + 8o)-

PROOF. Lemma 2.2 guarantees that N (I —aoA(so)) = N((I-00A(s0))?), while
Lemma 2.1 guarantees that the spectrum of A(5) C R for s € R. Using these facts,
the proof is obtained by adapting the proof of [15, Chapter 2, §2, Theorem 1,
pp. 57-64] to a Banach space setting, as was done in [4]. S

Theorem 2.3 has the following corollary which shall prove useful in the sequel.

COROLLARY 2.4. The number of components of . in a sufficiently small deleted
neighborhood of (og cos sg, 00 sin sg) s even and < 2kg.

PROOF. Since the functions ®,,®,, ..., P, are analytic, if two of them coincide
on a subset of (sg— 6, So +06) containing a cluster point, they must coincide on all of
(s0 — 6,50 +6). Thus, if two of them coincide on (so — 6,0) they must also coincide
on (sg — 6, so + 6). Hence, the number of arcs corresponding to s < sp is equal to
that for s > sg, so the total number is even, and clearly less than or equal to 2ko.

In the next result we dispense with the symmetry assumption (iv). Without (iv),
eigenvalues for (1.1) need not have equal geometric and algebraic multiplicities (e.g.,
Example (3.9) in [8]). However, if the point (0, o), o € R, is a simple eigenvalue
for (1.1), we can still give a description of ¥ near (0, po). We shall also have use
for the next result when we investigate quantitative properties of 2.

THEOREM 2.5. Suppose that (i) and (ii) are satisfied, agq(z) >V, ang pug s u
simple eigenvalue of

(2.5) Loy = pagety  in £, Pp=0 ondQ

with eigenfunction o normalized so that fn $g = 1. Then in a neighborhood of
(0, o), X consists of a curve which may be parameterized as (A, u(A)), A € (—bo, bo)
for some & > 0, with () real analytic in A and ©(0) = po. Corresponding solu-
tions to (1.1) may be ezpressed as (u,v, A, ) = (@®(N),D(N), A, (X)) with @(X),9(X)
also analytic in A. ‘

PROOF. We set X = [C2T%(())]2 x R? and ¥ = [C*((2)]> x R and apply the
implicit function theorem to F: X —Y defined by

F(®,9,\ 1)
= <L1@ - /\[au@ + alzd)}, Loty — ,u[am@ -+ 0:221[)], A{@z + ’(,D?] dx — 1> .

The real part of the generalized spectrum of (1.1) conmsists precisely of the points
(A, 1) for which there exist ®,% such that F(®,%,A,p) = (0,0,0). It is clear
that F(0, 0,0, uo) = (0,0,0), so that (0, uo) belongs to the generalized spectrum.
Denote by DF the derivative of F with respect to the variables ®, %, and u; then
for (p,q,0) € [CZT*(M)]? x R we have :

DF(0, %0, 0, #o)(p,q,0) = (Llp, Log — po(az1p + ag2q) — 0az2tho, 2 /ﬂ %q) .
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If DF(0, 0,0, o) is a bijection, then by the open mapping theorem it is a linear
homeomorphism, and we may apply the implicit function theorem. To see that the
map is injective, suppose that DF(0, 4,0, uo)(p,g,0) = (0,0,0). We have L;p =0
so that p = 0; thus Log = ugaseq + oazetp. Multiplying the last equation by
1o, integrating by parts over Q via the dlvergence theorem and the selfadjoint
structure of Lo, and using (2.5) yields o [, ag29)2 = 0. Hence, 0 = 0; but then
Lag — ppagag = 0, and we also have 2 fn g¥o = 0. Since yp is a simple eigenvalue of
(2.5) with eigenspace (1), p=01is a s1mple eigenvalue of (Lg — uoaze)y = py in
{1, 9 = 0 on 911, also with eigenspace (1)), so since J a%o = 0, we must have g = 0.
Thus DF(0, 40,0, ug) is injective. To show the surjectivity of DF(0, 0,0, uo), we
try solving DF(0, %, 0, to)(p,q,0) = (f,9,7) € Y. For the first component we must
solve Lip= f in 02 “(Q2), which is possible by our assumptions on' L. Hence D
is determined, and for the second component we must solve

(2.6) - L2g — poasaq = g + poa21p + oazath

for g in C3**((7). By the Fredholm alternatlve we can solve (2.6) provided that o
is chosen So that

a/ﬂazgwg = —-/Qillo[(g**-#oamp)}-

Making that choice of o, we solve (2.6). The solution will not be unique; if ¢ is a
solution, so is § -+ sng for any seR. Fix g g then for the third component we must
solve :

(2.7) ' 2 /ﬂ Yog =2 /ﬂ @+ o) = .

However, (2.7) is equivalent to

2s/Q«/18=r—-2/Qwoa,

which we can satisfy by making the appropriate choice of s. That choice deter-
mines g and gives our solution; hence DF(0, 0,0, uo) is surjective. Hence, we may
apply the implicit function theorem to assert that for A in some interval (—6g, ),
there are functions*®(A), % (A), u(A) with ®(0) = 0, ¥(0) = vo, and u(0) = po
satisfying F(®(A),¥(A), A, u(A)) = (0,0,0), which implies that (A, u())) belongs to
the generalized spectrum. To conclude that the dependence on ) is analytic, we
note that we may complexify X and Y and that for fixed D, 95, A, 05, 7=1,2,
the function F(®; + 21 P2, %1 + 2292, A1 + 23A2, 41 + 24u2) is complex analytic in
21, 22,23, 24. It follows from the analytic version of the implicit function theorem
(see [16, Theorem 1.48]) that ®()),%(A) and u()) are analytic in A near A = 0.
We have already shown that ®(X),%()), and u()) are real for A real, so we have
real analyticity for A € (—ép, 6p) with &y sufficiently small.

REMARK. Theorem 2.5 was partially motivated by some ideas used in [6]. The
corresponding result clearly holds near (Ao, 0) if Ag is a simple eigenvalue for

(2.8) Li® = Aa1;® in (), ®=0 on 0.
3. Quantitative results. We now turn to some quantitative questions about
L. Our first result describes how arcs in ¥ emanate from points (0, ug) or (Ao, 0)

where po and Ap are simple eigenvalues of (2.5) and (2.8) respectively. For conve-
nience we state the result for (2.5).
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THEOREM 3.1. Suppose that (i)-(iv) hold and that o is a simple eigenvalue
for (2.5) with corresponding normalized eigenfunction to. If (@(N),%(A), A, (X))
is as in Theorem 2.5, we have :

6y . HO<
with strict inequality if ais(z)o(z) # 0.

The expressions y'(0) aﬂd@’ (0) can in principle be calcﬁlafced; see (3.2), (3:6)
below.

PROOF. By Theorem 2.5, we may differentiate (1.1) with respect to A at
A = 0. Doing so, denoting ®'(0) by <I>1, and substltutlng (2(0),%(0), 0, 1(0)) =

(01_1/)6, 0: MO) ylelds
(3.2) : - L1®1 = a12%0

with &, € C2+°‘(ﬂ) The analyticity of ®(A) and 1/)(/\) then permits us to write
O(A) = A2y + A®y(A), ¥(A) = Yo + AP1(A), with & and )y bounded as A — 0.
Using that representation in (1.1), multiplying the second equation by g, then
integrating yields

63 [ volLabo +2Lats)

= () [ Pann®uio + NVaroBavo + aath + damors]
Using (2.5) and integration by parts in the integral on the left side of (3.3) yields
(3.4)
1(0) /ﬂ(amwﬁ + Aagzthoth1)

= u() /Q [a2292 + Aazavoda] + Ae(V) /Q a12®1%0 + Nu(N) /ﬂ a12®82%0.

By (3.2) we may replace aja1o with L, ®; in the second integral on the right side
of (3.4). Rearranging (3.4) then yields

©5) ()~ )] [ [arvd + Aamvoy
= —Au(}) [/Q @19 + )\/ﬂalzq’z?ﬂo} .

For X near 0, the integral on the left side of (3.5) is positive, so we have
:u'(’\) ~—/1’(0) — /‘l‘( )fﬂ ¢1L1(I)1 +’\fﬂ 012‘1)2’1/10
A fg(amwo + Aagathoth1)
Letting A — 0, we have

(3.6) | (0)=—#0 ‘I’lLl‘I’l//am"l}o

By (i)-(iii) we have ug > 0 and the integral in the numerator in (3. 6) nonnegative.
That integral will be strictly positive if ®; # 0, whlch will be true by (3.2) 1f

aatho # 0.
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REMARK.  Theorems 2.5 and 3.1 are quantitative in the sense that they give
information about the location -and direction of some of the arcs constituting &
in terms of quantities which can in principle be calculated. The computational
nature of the result depends on the hypothesis that pg is a simple eigenvalue, which
has the consequence of allowing us to use A instead of arclength as a parameter
determining ®,%, and u. In the more general case it may be possible to use the
parameterization of Theorem 2.3 and obtain some information about d)/ds and
du/ds near a point so where we have some information about A(sp), u(sg), and the
corresponding eigenspace for (1.1).

We shall now employ a variational characterization of eigenvalues to describe how
points of ¥ are distributed along rays in the first quadrant in R?. To formulate the
variational approach, we consider systems of the form

2 .
(3.7) Liwi = O‘Z aij(z)w]- in Q, 1= l, 2,
j=1

w; =wg =0 on o0

where the operators L; satisfy (i) and the coefficients a;; satisfy (ii)-(iv) so that
(ai]-)z?,j=1 is a positive definite symmetric matrix. We observe that for such sys-
tems we may apply the variational formulation of the eigenvalue problem given by
Courant and Hilbert [9]. By the type of analysis done in Lemma 2.1, we see that
spectrum of (3.7) consists of a discrete set {0} of real eigenvalues which can be
ordered so that o < ok41 and o — 0o as k — co. Following Courant and Hilbert,
we set

(3.8) DY[®] = / i Al (2)84,0,, + A )3 |, 1=1,2,
8 lig=1

and ‘

(39) H(u,v), (®,¢)] = /{;[auu@ -+ am(uz/) + v®) + agav1)]

with H((u,v)] = H|[(u,v), (u,v)]. We observe that by (ii)~(iv) H defines an inner
product, and write (®, %) (u,v) if H[(®,v), (u,v)] = 0. It follows precisely as in
the case of single equation treated in [9] that the kth eigenvalue for (3.7) is given
by

(3.10) ok = sup inf _[(DY@] + D?[4])/H[(2,9)]]-
velal () (@.9)€[Hg ()]
V={(u1,01)r(Bk—1,9%-1)} (®,9)V
The characterization (3.10) yields a comparison theorem for eigenvalues of (3.7)
analogous to those given for a single equation in [9, Chapter VI, §1]. We state the
comparison result below, but omit the proof; it is essentially the same as that given
by Courant and Hilbert for a single equation.

THEOREM 3.2. Suppose that {o}},{cZ} are the specira for two systems of the
form (3.7), with D,, H,, o = 1,2, the corresponding forms defined in (3.8), (3.9).
If Di[u] > Dhfu] for 1 =1,2 and all u € H(Q) and Hi[(u,v)] < H[(u,v)] for all
(u,v) € [Ho*(Q)]?, then for all k we have o} > o3.
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Theorem 3.2 is quantitative in the sense that it allows us to obtain information
about the location of points of ¥ for (1.1) via comparison with other systems. We
will use that approach to obtain most of our remaining results.

To apply Theorem 3.2 we must recast (1.1) in the form (3.7). To that end, we
consider the points of the generalized spectrum lying along a fixed ray in the real
A — u plane. For any m > 0 we cons1der the ray u = Am; along that ray, (1.1) may
be written as

(3.11) L1 = )\((111‘1) +- a121/)), (l/m)ng = A(a12<I> + azz'l[))
or, equivalently,
(3.12) mLy1® = p(a11® + a129), Lot = pu(a12® + az29).

Both (3.11) and (3.12) have the same form as (3.7). The points of I lying on the ray
= \m can thus be characterized as (Ag(m), ur(m)) with pg(m) = mAx(m) and
() tho kth eigenvalues for (2.11) and (‘2 1‘7\ respectively. Hence,

VVlth AIC\”“))I“/IC\’“‘] ULEL Ul CRECM VG WD AUd (Ui s Giill i
we can use Theorem 3.2 to describe the d1rect10n of the arcs constituting X in the
first quadrant. We have

THEOREM 3.3. Suppose (i)—(iv) hold. If for m > 0 (Ax(m), ux(m)) denotes the
kth point of intersection (counting multiplicities) of ¥ with the ray p = Am, A >0,
then, (Ax(m), ux(m)) varies continuously with m. As functions of m, Ag(m) is
nonincreasing; and pg(m) = mig(m) is nondecreasing.

REMARKS. It follows from Theorem 3.3 that as (), ) moves along one of the arcs
constituting the set z in tne direceion oi lncreasiuy /\, W 1ust L uuuiuu casiug. i
(A, 1) passes through a point of the generalized spectrum with multiplicity greater
than one, then in general several arcs will emanate from the point; however, all of
them must be nonincreasing in u as A increases. Because of this phenomenon, the
curve (Ax(m), ux(m)) will generally not be differentiable in m. That such is the
case may be seen by considering the constant coeflicient problem studied in [s].

PROOF OF THEOREM 3.3. Defining D® as in (3.8) and taking H as defined by
(3.9) for the systems (3.11) and (3.12), we have by (3.10) applied to (3.11) that

. D'[@] + (1/m)D?[¢]
(3.13)  Ag(m) = sup in , .
. VCIH Q)P (@) €[HY (Q)]? H[(®,9)]
Ve={(u1,01) 0 (Uk—1,V6—-1)} (2.)*tV

Clearly, (1/m)D2%[%] is nonincreasing for any ¥ as m increases; D' and H are
unchanged, so by Theorem 3.2 Ag(m) is nonincreasing in m. To see that ux(m) is
nondecreasing in m, we apply (3.10) to (3.12) to obtain

) mD*[®] + D?[3)]
3.14) m(m)= sup inf
(3.14) x(m) Vel (@) @weEypP  H{(®,9)]
Ve{(u1,01)sen(Uem1,06-1)}  (2)HV »

and note that mD![®] is nondecreasing in m and D? and H do not involve m, and
again apply Theorem 3.2.
Notice now that if 5 >0is such that m— 6 > 0, we have

(3.15) Ak(m +5) < Ak(m) < Ag(m —6)
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and

(3.16) ' tie(m +6) = p(m) 2 p(m — 6).

Siﬁce (8.16) is equivalent to ,
(m+6)Ae(m+8) > mAg(m) = (m = 8)Ag(m — 8),

(3.15) and (3.16) imply that

A(m) < Ag(m+6) < Ag(m) < Ag(m —6) <

6>\1c( m).

Therefore Ag(m) and pg(m) = mAx(m) are continuous functlons of m.
The final result of this section tells how points (0, 1) can ‘be connected to points
(A,0) via arcs in .

THEOREM 3.4. Suppose that (1)-(iv) hold. Let py denote the kth eigenvalue of
(2.5) and Xy the kth eigenvalue of (2. ) Then there exists an arc in & connecting

(0, i) to (Ak,0)-
PROOF. We can write {1.1) as

m+6

Liu=o0coss(aiiu+aiov), Lev = osins(aiou + agqv)

which is equivalent to (3.12) with 4 = osins and m = tans, s € (0,7/2). If
we start at s = 7/2 and let s decrease toward zero, then by Theorem 2.3 the
part of ¥ in the first quadrant lying in a neighborhood of (0, #*) with u* = ug
consists of a system of analytic arcs equal in number to the multiplicity of u*.
By fixing k and choosing s close enough to w/2, we can put the arcs into one-
to-one correspondence with pg, tg+1,. .-, be+i—1, where [is the multiplicity of u*.
Choosing the arc corresponding to i, we see that for some € > 0, if s = 7/2—¢, the
point where the kth arc meets the ray g = m\ with m = tans is (Ax(m), pi(m))
where (Ag(m), ux(m)) is as in Theorem 3.3. Then by Theorem 3.3 we can decrease s
and hence m until (Ax(m), ux(m)) meets the arc corresponding to A and emanating
from (A*,0) with A* = Ag. (That such an arc exists and meets (Ax(m), ux(m)) for
m sufficiently small follows from the same argument used to assert the existence of
such an arc emanating from (0, u*) with p* = ug.)

4. Multiplicity estimates. We now consider the problem of bounding the
dimension of the eigenspace at points of the generalized spectrum. Our results
are qualitative in content but require some of the quantitative methods of the
previous section. In general, there will be points at which the eigenspace will have
dimension two. As shown in [5], this phenomenon already occurs in the case where
L' = L% = L, all the eigenvalues for L& = A® in 2, ® = 0 on AN, are simple,
and the coefficients a;; are constant. The issue is complicated further by the fact
that question of multiplicities of eigenvalues for a single elliptic operator is a subtle
and difficult one. Methods based on the theory of positive operators can be used
to show that under appropriate hypotheses the first eigenvalue of a second-order
elliptic system is simple; see {7, 8]. Even for the Laplacian, higher eigenvalues
may have multiplicity greater than one. However, the simplicity of all eigenvalues
of the Laplacian with Dirichlet boundary conditions on domains in R” is known
to be generic (in an appropriate sense) with respect to the domain; see [12, 17].
We shall proceed by assuming that  is a domain for which the eigenvalues of
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the Laplacian are all simple and using Theorem 3.2 to compare our system with a
simpler one, constructed from the Laplacian, for which we can readily determine
the eigenvalues occurring along the ray u = Am. Since the choice of comparison
systems is somewhat arbitrary, our approach illustrates a situation common in the
theory of partial differential equations: the technique is more significant than any
specific result that it yields. Thus our analysis is not the only possible one, but
serves to explicate the method. (The question of estimating the first eigenvalue is
somewhat different than that of estimating higher eigenvalues; that problem was
treated by Protter in [14].) ’

In the remainder of this section we shall assume the following:

HYPOTHESIS S. The domain (2 is such that the spectrum of

(4.1) —Aw=~w in ], w=0 on ofl

consists of a sequence y; < 72 < 73 < --- of simple eigenvalues. As noted above,
TT 1t Q te aadial ad cormarinalle writh macnan + +a )

ITYyPOLULESIS O IS SatiSlied BENEriCally witll ITopPLiu wu ai.

We shall proceed by considering points of ¥ lying on the ray p = miA, A > 0,
and comparing them with multiples of the eigenvalues for (4.1) via Theorem 3.2.
Following the notation of Theorem 3.3, let ((1/m)ux(m), px(m)) denote the kth
point of intersection of ¥ with the ray emanating from the origin given by p =
mA, A > 0. For specified regions of the A-u plane we will show via Theorem
3.2 that for each m there are intervals Iy which can be given explicitly in terms
of eigenvalues of (4.1) and bounds on coefficients in our system, and for which
pi(m) € Ix. We will then give conditions under which no point on p = mA can
belong tO MOTe TNAN TWO SUCIL itervals and Lieuce uv sigeuvaiue v W FaY CAn Bove
multiplicity greater than two.

To obtain bounds for px(m) via comparison of our system with simpler ones,
we must give explicit bounds for certain quantities depending on the coeflicients of
our system. We shall assume conditions (i)~(iv). Further, we shall assume that for
[ =1,2, ¢ and E; are positive constants such that A

ell&iz S Z AiJ(Z)ﬁzfj S Ellﬂ?a TE Q’ 5 S Rna
(4.2) ij=1

Al(z) =0, z €.

(The condition A'(z) = 0 is not necessary for our arguments, but simplifies the
computations.) If we set h(u,v) = a1 (2)u? + 2a12(z)uv + az(z)v?, then we have
o—(z)(u? +v?) < h(u,v) < 04 (z)(u? +v?) where o (z) and 01 (z) are respectively
the smaller and larger eigenvalues of the matrix ((a;;(z))). Since by (iii) the matrix
is positive definite in {2, we have :
(4.3) - q(u? +v?) < h(u,v) < Qu? +1?)
where Q = supg o4 (z) > info_(z) = ¢ > 0. Finally, for each fixed k € Z* we
‘have by Hypothesis S that ‘ :

(44) : | L R(K) = ke{ir,%?,K}((s&—*‘l/&k) > 1.

‘We can now state a multiplicity result based on Theorem 3.2.
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THEOREM 4.1. Suppose that Hypothesis S and conditions (i)—(iv), (4.2) and
(4.3) hold. Let R(K) be as defined in (4.4) and suppose that we can choose positive
constants b, B with b < B such that

(45) be; < eq <‘E2 < BE;
and | .
(4.6) : R(K) >'mBX{.BE1/b€1,E2Q/b61q, BElQ/EQQ}

Then if (A, 1) € X is in the region of the A-u plane bounded by p = bA, u= B,
and u = Esvk /q, the dzmenszon of the ezgenspace for (1.1) at (A, ) is either one
or two.

REMARK. Condition 4.6 will be met if for example we can take all the constants
on the right sufficiently close to 'one; or if we are given any: set of constants and
R(K) is sufficieritly large. The condition arises in its specific form from our chmce
of comparison systems; there are various other possibilities. :

PROOF. We consider the comparison systems

—~bey Au = uQu,
(4.7) ' —eaAv = pQu in 0,
' u=v=0 ondQ
and
o © - —BE;Au = uqu,
(4.8) : - —EjAv=ypgv inQ,.

u=v=0 . ondfl,:

where the constants are as in (4.2), (4.3). The eigenvalues for (4.7) belong to the
sequences (17)jez+ = ((be1/Q)s)sez+ and (47)jez+ = ((62/Q)7j)jez+; similarly,
the eigenvalues for (4. 8) belong to the sequences (i});ez+ = ((BE1/9)7;)jez+ and
(B2)jez+ = ((E2/9)7)jez+- It is not immediately obvious how the full'spectra
'(uk) kez+ and (B*)gez+ of (4.7) and (4.8) respectively are Telated to the sequences
(u )y (14 2) (f3), and (u]) However, by (4.5) and (4. 6) we have ' ‘ '

(4.9) be; < eg < EQQ/(] < R( )b61
and similarly
(4.10) Ey < BE; < E2R(K)

(For our purposes inequalities of the form ey < be; < R(K)eg and/or BE; < E3 <
BE;R(K) would serve as well as (4.9), (4.10); using those inequalities instead of
(4.9), (4.10) would lead us to require a slightly different form of (4.6).) It follows
from (4.9), (4.10) that u < ,u < u]_H and p? < g} < @2, for 1'<y < Ky thus
for 1 < ¢ < K we may take Bojy = y_z By = _;ff., foi—1 = B2 and fig; = . We
now use Theorem 3.2 to compare the eigenvalues of (4.7), (4.8) with those of (3.12).
(We recall that ¥ is determined by those eigenvalues.) Conditions (4.2) and (4.3)
permit the comparisons; we have for example ‘ -

Hl(u,v)] = /h(u,v) < Q‘/(u2 + v?)
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and

b61/|Vui2 < m/ Z A 5 Uz Uz _._;m,Dl['U,],

1,_11

62/|V1){2 S/ Z Al vg; = D[]

n,5=1
so that p, < ti(m); similarly uk(m) < gk, prov1ded b < m < B. Thus, we have
for1<k < K

(4.11) (bel/Q Y < pak—1(m) < (Ea/a)Ye,
(e2/@Q) Yk < pax(m) < (BE1/q) k-

The inequalities (4.11) establish intervals in which the eigenvalues u; must lie. To
see that no eigenvalue can have multiplicity greater than two, it suffices to observe
that there are no points belonging to more than two such intervals. Another way
of expressing that information is via the following inequalities, obtained from (4.6)
and (4.11):

(4.12) fiaj—1 = B2 = (Ea/q)v; < (belR(K)/Q)%
< (be1/Q)vi+1 = _j+1 = fyite

and

Haj = ,174; = (BE1/q)v; < (e2R(K)/Q)v; < J+1 = Hoiper
Hence i < 4, ., So that no point can belong to more than two intervals I, =
[,u , fix]. Thus, no eigenvalue pi(m) can have multiplicity greater than two. Since
the points of ¥ have the form ((1/m)ux(m), px(m)), the dimension of the nullspace
for (1.1) is at most two.

5. Asymptotic results. We have seen that for A near zero, & consists of
arcs emanating from the point (0, ) where p is an eigenvalue for Lat) = pagq) in
), 9 = 0 on 8. We now consider the behavior of X for A large and positive. We
shall assume that conditions (i)-(iv) are satisfied, and further that (4. 2) holds and
a11,a12 € C*(Q). Let (L, c(z)) denote the kth eigenvalue for

(6.1 Lw = ~e(z)w in Q, w=0 ondf.
Define a0 (z) by
(52) aoo(a:) = agg — a’fz/au.

We then have the following:

. THEOREM 5.1. For each 6 >0 and j € Z%, there exists a number X such that
¥ has.a subset S; C {(M,p): A > A |p— 'yJ(Lg,aoo)i < 6} with S; N [{A} x {u:
I —v;(L2,a00)| < 6}] is nonempty for all X > X.

REMARK. Since ¥ consists of a network of piecewise analytic arcs, we can thus
vary (), u) continuously in such a way that (X, x) € £, X — oo, and p — (L2, @eo)-
PROOF. Let D, D?, and H be as defined in (3.8), (3.9). Let P be the matrix

S (1 asafai1 .
P=(p “1™):
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then

-1_ (1 —aiz/an1
= (3 o).

We note that multiplication of a vector valued function (written as a column vector)
by P generates a bounded, invertible operator on [H}(2))%. Let

(5.3) Hl(u,v), (@, 9)] = / (0110® + agove)).

A calculation shows that if wy, wo € [H}(2))?, then
(54) ’ ) ﬁ[PW]_,PWg] = H[Wl,w2}.

We shall write w1 Lgws if H[w;,wz] = 0 and wilgws if ﬁ[wl,wg] =0. By
(5.4) we see that wi.Lywsy if and only if PwilgPwy. IfV = {wy,...,wk_1}
and PV = {Pwjy,...,Pwy_1} then

(5.5) | - wlyV if and only if PwL ;PV.

If we denote w by (u,v) and Pw by (@,¥) then ¥ = v and @ = u+a;19v/a11 s0 that
u =% —a129/a1;. Hence D'[u] = D[i — a128/a11] and D?[v] = D?[]. Thus we
have ‘

'le[u] -+ Dz[v] _ mD1 [’ﬁ — a12’l~)/a11] -+ DZ[’E]

O H[(w,0)] HI(@,)]
and by (5.5) _
m mD[u] + D?[v] ~  inf mD[§ — glgﬁ/an] + D?[3]
(u)LyV H[(u, v)] (@,9)L gz PV H{(@,9)]

Since the map generated by P is invertible, it follows that the family of possible
(k — 1)-tuples V is identical to the family of (k — 1)-tuples PV'; thus, in view of
(3.15), we have = | -
. mD?[u] + D?[v]
Helm) = sup inf ————
o v wolav o Hl(u,v)]
V={wi,. ,Wig-1}
. mD il — a120/a11] + D2[7]
= sup inf _ e
Vclai))? (@i)LgV H{(%, )]
‘7={Y1.~',Yk—1}

We will now drop the tildes on the (&,9) terms in the second line of (5.6) and
estimate the terms occurring there. We have -

N
1 19V 1 a1V a1V
—_— | == E As. R el Y Rkl
b [u a11 ] / 4 {um‘ <a11 )m,] [uz] <a11 )IJ

(5.7) =t

o[ (22)] o o (32,

a a
11 ig=1 11




360 R. 8. CANTRELL AND CHRIS COSNER

By condition (i), the map (1) — Z i1 Aj;(z)&n; is an inner product on RN
for any fixed z, so

2 Z ALug, <a12”>

ai
1.7 1

< m!/? Z A”u.m,um, +m~/2 Z Al (amv) (__a12v>
z; x5

(5.8)

ig=1 ig=1 aii a11
and hence by (5.7) and (5.8) we have
(1 —m?)D u] + (1 = m~/?)D*[(@rzv/an)] < D*{u = (ar2v/an)l;
D'[u — (a120/a11)] < (1 +m?)D*[u] + (L +m™ /%) D [(a12v/a11))-
By assumption.aipz/ai; € C* (Q) so there are constants K3 and ‘Kz such that

(5.10)  0<(az/an)’ <K; and 0% ZA (a12> (a_1_2_> < K.
4 m]. '

a a
ii=1 11 11

(5.9)

Also, by (4.2), 0 < D[v] < (E1/e2)D?[v]. Finally, v
(5.11) i (=A 1)/’0 </|w12 < (1/62)1)2{]
for any v € H}(Q) by Poincaré’s 1nequa11ty Thus, using (5. 10) (5.11) and (4.2),

o<pt|(22)]= | S 4 [(Zii) (;‘ii)“xf}

i,7=1

ij=1 i i
N
e 3| (3) | [(22) )
1,7=1 Y 011/ g, 11 -
(512) ' ‘ ‘N a1 2
+/ Z A,%J <—C‘L';‘> 'Um"U:z:J
i,7=1
N
o f yoay(e) (22) v
ig=1 Y\a1 /g \011/ 4
N as\ 2
12
+2/»Z A%j (—C-Ll—l—> Vz,Vz,
2,7=1

< (Z[K‘z(’h(-A, 1))"l + K1 F1]/ez) D?[v)].
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For m < 1 and K3 sufficiently large (but independent of m) we have by (5.9) and
(5.12)

(5.13) D'u — (a12v/a11)] = (1 = mY?)D[u] + (1 — m™Y/2) K3 D?[v]
and

(5.14) - D'u-— (a12v/a11)] < (1 +mY?)D [u] + (1 + m~Y2) K3 D).
Let

(5.15)

u, (m) = sup inf m(1 —m'/%) D' [u] + (1 +m(1 — m~*/?)K3)D?[v]
By

(
vemi@)?  w)laV Hi(u,v)]
V:{W1 ..... Wk—-l}

and let
(5.16) |
Ge(m)=  sup o M+m2)D u] + (1+m(1+m~/2) Kq) D?[o]
velEi@)? (wviaV Hi(u,v)]
V—'_'—{Wl ,‘..,Wk__l}' :

where m is chosen sufficiently small so that 1+ m(l — m~1/2)Kz > 0. Then by
(6.6), (5.13) and (5.14) we have ‘

(5.17) e (m) < pk(m) < figg(m).

From (5.15) and (5.16) we have that y_k(}n), and ﬁk(m) are the kth eigenvah’l‘esv for
(5.18) m(l —m?)Lyu = pany, (1+m(l- m~Y?)K3)Lyv = J 12198

and , Lo

(5.19) m(1+mY?)Liu = fagu, (14 m(1+ m~Y?)K3)Lov = Bacov
respectively. Hence, the sequence ‘(y_k(m)) is precisely the set ' -

{m(1 - ml/z)'yi(Ll, a11),[1 - m2Ks + mKslv; (L2, a00)}

written in increasing order; similarly, {fix(m)) is the set {m(1 +m/2)y;(L1,a11),
[1+ mY2K3 + mK3]v;(L2,a0)} Written in increasing order, since the systems
(5.18) and (5.19) are uncoupled. We wish to show that for all j € Z* and all m
sufficiently small there is a k € Z7 such that ;

(520) . [L—m'2 K3+ mKs)v;(La,000) < (M) < pix(mn)
and _ o ‘ ‘
(5.21) pr(m) < fig(m) < [1+m'? K3 + mKa]v; (L2, Goo)-

Such will be the case provided that whenever '
g (m) = [1 = m**Ks + mKs]v;(A2, ac0)

then for some 7 > 0, fig4r(m) = [1 +m /2 K3 +mKs]v;(La,a00). Thus, we want to
have the number of eigenvalues of (5.19) less than [1 + m'/2 K3 + mK3]v;(L2, aco)
to be at least as large as the number of eigenvalues of (5.18) less than

[ = mY? Ky + mEs)v; (L2, doo)-
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The number of such eigenvalues arising from the second equation:in either system
will be 7 — 1, so we need only show that if

(5.22)  m(l—m"?)y(L1,a11) < [1 - m? Kz + mK3]v;(L2, aoo)

then

(5.23) m(L +m?)y;(L1,a11) < [L +mY2Ks + mKs]v;(La, Goo)-

Now, (5.22) implies that

1/2 14 m!/2 1/2
m(1+m )")’7;(.[41,&11)‘S W [l—m K3+mK3]'yj(L2,a°°)
o (5.23) follows provided that we have ‘
1 1/2
(5.24) {i‘?mn—l/'i] (1 — m!/2K3 + mKs) < [L +m!/2 K3 + mKs).

Since we assume m < 1, (5.24) is equivalent to the corresponding inequality mul-
tiplied on both sides by (1 — m!/?). Performing the multiplication and simplifying
yields the equivalent inequality

(5.25) mKs < Ka — 1.

We may choose K3 > 1; then (5.25) holds and hence (5.22) unphes (5.23), provided
m is sufficiently small. Thus, for each g € Z* and for all m sufficiently small, there
is a point (X, u) = (u/m, ) € T such that

(5.26) [1- m‘/ng +mKs|v;(L2,000) S < |1+ m Kg + mKs|v; (L2, Goo)-

Since we may choose y to depend continuously on m, we may take A to be a
continuous function of m with A — oo as m — 0. The intermediate value theorem
then implies that A takes on all sufficiently large values. For m sufficiently small,
(5.26) gives |¥j(L2,aco) = | < 6 so the points (A, u) form the desired set Sj.
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